Биологическое действие радиации отдаленные последствия радиационного поражения. Хроническая лучевая болезнь

Лучевая болезнь – заболевание, возникающее от различных видов ионизирующих излучений.

При облучении в дозах 1-10 Гр развивается типичная форма острой лучевой болезни, при которой имеет место преимущественное поражение костного мозга (костномозговой синдром ). В диапазоне доз 10-20 Гр возникает кишечная (тошнота, рвота, кровавый понос, повышение температуры тела, мб полная паралитическая непроходимость кишечника и вздутие живота), при дозах 20-80 Гр - токсемическая (сосудистая) (нарушения в кишечнике и печени, парез сосудов, тахикардия, кровоизлияния, тяжелая интоксикация и отёк мозга) и при дозах выше 80 Гр - церебральная формы лучевой болезни ( судорожно-паралитический синдром, нарушение крово- и лимфообращения в ЦНС, сосудистого тонуса и терморегуляции. Функциональные нарушения пищеварительной и мочевыделительной систем, прогрессивное снижение кровяного давления).

Патогенез:

В течении луч болезни выделяют четыре фазы: 1) первичной острой реакции; 2) мнимого клинического благополучия (скрытая фаза); 3) разгара болезни; 4) восстановления.

1)Фаза первичной острой реакции организма человека развивается в зависимости от дозы сразу после облучения. Возникают некоторое возбуждение, головная боль, общая слабость. Затем наступают диспепсические расстройства (тошнота, рвота, потеря аппетита), нейтрофильный лейкоцитоз со сдвигом влево, лимфоцитопения. Наблюдаются повышенная возбудимость нервной системы, колебания артериального давления, ритма сердца и т.д. Активация гипофиз-адреналовой системы приводит к усиленной секреции гормонов коры надпо

Чечников.

Продолжительность фазы первичной острой реакции 1-3 дня.

2)Фаза мнимого клинического благополучия характеризуется включением защитно-компенсаторных реакций. В связи с этим самочувствие больных становится удовлетворительным, проходят клинически видимые признаки болезни. Длительность скрытой фазы зависит от дозы облучения и колеблется от 10-15 дней до 4-5 недель.

При сравнительно небольших дозах (до 1 Гр) начальные легкие функциональные реакции не переходят в развернутую клиническую картину и заболевание ограничивается затухающими явлениями начальных реакций. При очень тяжелых формах поражения скрытая фаза вообще отсутствует.



Однако в это время нарастает поражение системы крови: в периферической крови прогрессирует лимфоцитопения, снижается содержание ретикулоцитов и тромбоцитов. В костном мозгу развивается опустошение (аплазия).

3)Фаза разгара болезни характеризуется тем, что самочувствие больных вновь резко ухудшается, нарастает слабость, повышается температура тела, появляются кровоточивость и кровоизлияния в кожу, слизистые оболочки, желудочно-кишечный тракт, мозг, сердце и легкие. В результате нарушения обмена веществ и диспепсических расстройств резко снижается масса тела. Развиваются глубокая лейкопения, тромбоцитопения, выраженная анемия; увеличивается СОЭ; в костном мозгу опустошение с начальными признаками регенерации. Наблюдаются гипопротеинемия, гипоальбуминемия, повышение содержания остаточного азота и снижение уровня хлоридов. Угнетается иммунитет, в результате чего развиваются инфекционные осложнения, аутоинфекция и аутоинтоксикация.

Продолжительность фазы выраженных клинических проявлений от нескольких дней до 2-3 недель. При облучении в дозе свыше 2,5 Гр без проведения лечебных мероприятий возможен смертельный исход.

4)Фаза восстановления характеризуется постепенной нормализацией нарушенных функций, общее состояние больных заметно улучшается. Снижается до нормы температура тела, исчезают геморрагические и диспепсические проявления, со 2-5-го месяца нормализуется функция потовых и сальных желез, возобновляется рост волос. Постепенно происходит восстановление показателей крови и обмена веществ.

Период восстановления охватывает 3-6 месяцев, в тяжелых случаях лучевого поражения может затягиваться на 1-3 года, при этом возможен переход болезни в хроническую форму.

Отдаленные последствия действия радиации могут развиться спустя несколько лет и носят неопухолевый или опухолевый характер.

К неопухолевым формам в первую очередь относят сокращение продолжительности жизни, гипопластические состояния в кроветворной ткани, слизистых оболочках органов пищеварения, дыхательных путей, в коже и других органах; склеротические процессы (цирроз печени, нефросклероз, атеросклероз, лучевые катаракты и др.), а также дисгормональные состояния (ожирение, гипофизарная кахексия, несахарное мочеизнурение).

Одной из частых форм отдаленных последствий лучевых поражений является развитие опухолей в критических органах при α- и β-излучении, а также радиационные лейкозы.

2. Гипогликемические состояния. Виды. Механизмы развития. Последствия для организма. Гипогликемическая кома.

Гипогликемия - понижение уровня сахара крови ниже нормального. Развивается в результате недостаточного поступления сахара в кровь, ускоренного его выведения или вследствие того и другого.

Гипогликемическая реакция - ответ организма на острое временное снижение уровня ГПК ниже нормы.

Причины:

♦ острая гиперсекреция инсулина через 2-3 сут после начала голодания;

♦ острая гиперсекреция инсулина через несколько часов после нагрузки глюкозой (с диагностической или лечебной целью, а также после переедания сладкого, особенно у лиц пожилого и старческого возраста).

Проявления: низкий уровень ГПК, лёгкое чувство голода, мышечная дрожь, тахикардия. Указанные симптомы в покое выражены слабо и выявляются при дополнительной физической нагрузке или стрессе.

Одна из характерных особенностей лучевых поражений состоит в том, что у людей через 10-20 лет и более после облучения в «выздоровевшем» и, казалось бы, полностью восстановившемся от лучевого поражения организме вновь возникают различные изменения, которые называют отдалёнными последствиями облучения. Особенностью заболеваний, относящихся к отдалённым последствиям является то, что они возникают как после местного, так и после общего (внутреннего и внешнего) облучения. Различают соматические и генетические отдалённые последствия. Основными соматическими последствиями облучения является сокращение продолжительности жизни, возникновение лейкозов, злокачественных опухолей, катаракты, стерильности.

Различают неопухолевые и опухолевые формы отдалённых последствий.

Неопухолевые формы включают три вида патологических процессов:

1. Гипопластические состояния – развиваются главным образом в кроветворной ткани, слизистых оболочках органов пищеварения, дыхательных путей, в коже и других органах. Эти нарушения возникают при накоплении высоких доз излучения (3-10 Гр) как при внешнем гамма-облучении, так и поражении инкорпорированными радионуклидами. Основными нарушениями являются: гипо- или гиперхромные анемии, лейкопения, атрофия слизистой оболочки желудка, кишечника, гипо- или анацидный гастрит, атрофия половых желез и бесплодие (стерильность).

2. Склеротические процессы. Происходит обширное и раннее повреждение сосудистой сети облучённых органов, развитие очаговых или диффузных разрастаний соединительной ткани на месте погибших паренхиматозных клеток. Основные нарушения: цирроз печени, нефросклероз, пневмосклероз, атеросклероз, лучевые дерматиты, лучевые катаракты, некрозы костной ткани, поражения нервной системы.

3. Дисгормональные состояния развиваются без видимой дозовой зависимости. К проявлениям дисгормональных состояний относятся ожирение, гипофизарная кахексия, несахарный диабет, кистозные изменения яичников, патологические сдвиги в половых циклах, гиперплазия слизистой оболочки матки, паренхимы молочных желез (что может привести к развитию опухолей), поражения щитовидной железы (гипотиреодизм, новообразования), сахарный диабет и др.

Опухолевые формы. К ним относятся опухоли, развивающиеся по прямому механизму (возникают чаще при облучении инкорнорированными альфа- и бета-излучателями) – опухоли костей, печени, почек, лёгких, кожи. Другой разновидностью являются дисгормональные опухоли вследствие нарушения равновесия в функции эндокринных желез – опухоли матки, яичников, предстательной желе, самих желез внутренней секреции. И, наконец, имеются опухоли сложного генеза, возникающие в результате сочетания прямого и дисгормонального механизмов – лейкозы, опухоль молочных желез.

Рассмотрим основные соматические отдалённые последствия . Самым общим из отдалённых эффектов является сокращение продолжительности жизни . Выявлена прямая пропорциональная зависимость между дозой радиации и степенью укорочения жизненного цикла. Экспериментально доказано, что у человека при однократном облучении сокращение продолжительности жизни составляет 0,1-1,5 суток на каждый миллизиверт. Если радиация действует не одномоментно, а длительно, на протяжении всей жизни, непрерывно, то сокращение жизни удаётся зарегистрировать, начиная с суммарных недельных доз в 10 рад гамма-излучения или 1 рад нейтронного облучения. Укорочение жизни лиц, перенесших атомную бомбардировку в Хиросиме и Нагасаки, относится за счёт увеличения заболеваемости лейкозами и опухолями. В отчёте комиссии ООН за 1964 г. отмечается, что заболеваемость лейкозами в Японии с 1946 по 1960 г. выросла с 10,7 до 28 на 1 млн жителей. При этом вероятность заболевания уменьшалось с увеличением расстояния от эпицентра взрыва, т.е. со снижением дозы.

Злокачественные новообразования под влиянием облучения могут возникать практически во всех органах. Наиболее часто наблюдаются лейкозы, развитие которых происходит через 5-25 лет после облучения. Частота лейкозов у облучённых по сравнению с необлучёнными возрастает в 5-10 раз. В диапазоне 3-15 Гр каждому Гр соответствует увеличение заболеваемости на 50 случаев на 1 млн. человек в год.

Позже возникают другие раковые заболевания (рак щитовидной железы, молочной железы, яичников, желудка и лёгких), главным образом в результате общего лучевого воздействия. Опухоли кожи и костей являются результатом местного облучения – внешнего (кожа) или внутреннего (кости). При хроническом облучении малыми дозами развитие злокачественных опухолей в 3-10 раз ниже, чем при однократном воздействии той же дозы. Детский организм в силу анатомо-физиологических особенностей и большой чувствительности к действию ионизирующего излучения в большей степени подвергается риску (что видно на примере рака щитовидной железы у детей). Сокращается и время появления раковых новообразований у детей по сравнению со взрослыми.

Возникновение катаракты (помутнения) хрусталика – типичное отдалённое последствие тотального облучения организма или местного облучения глаза и хрусталика. Особенно часто катаракты появляются при длительном нейтронном облучении. В Хиросиме катаракты возникали в 25-30% случаев у находившихся в 4 км от эпицентра взрыва (спустя несколько месяцев и до 12 лет и более). Минимальная пороговая доза рентгеновских лучей при однократном воздействии – 2 Гр, при хроническом воздействии в течение нескольких лет облучения катаракта развивается при дозах, превышающих 0,3 Зв в год.

К отдалённым последствиям облучения относится также нефросклероз , развивающийся в результате повреждения почечной ткани и замещении её соединительной тканью. Стойкое повышение АД, характерное для лучевого поражения, в значительной степени зависит от развития нефросклероза.

Радиобиологические эффекты облучения живого организма делятся на пороговые (нестохастические) и беспороговые (стохастические). Радиационными эффектами нестохастического характера, следует считать, прежде всего, острую лучевую болезнь, местные повреждения кожи (ожоги), лучевую катаракту, стеризизацию, дистрофические повреждения различных тканей. При этом имеется определённое пороговое значение дозы облучения (например, при одноразовом воздействии радиации в 100 рад), ниже которого видимого действия радиации не наблюдается.

Такие нарушения, как опухоли различной локализации, лейкозы, генетические эффекты, умственная отсталость, уродства носят стохастический беспороговый характер. Вероятность возникновения этих поражений существует при самых минимальных дозах облучения.

Действие ионизирующего излучения на липиды. Липиды – жироподобные органические вещества, нерастворимые в воде. Они входят в состав биологических мембран, а также играют роль запасных питательных веществ в организме, накапливаясь в отдельных частях тела.

Липиды являются основой клеточных мембран. Многие процессы клеточного метаболизма происходят именно в мембранах. Поэтому перекисное окисление липидов, которое может быть вызвано облучением, влечет за собой изменение биохимических процессов в клетке, а нарушение целостности наружной мембраны – к сдвигу ионного баланса клетки.

Действие ионизирующего излучения на липиды и изменения, которые могут происходить в клетках при облучении, отражает Приложение В1.

Действие ионизирующего излучения на углеводы. Углеводы (сахара) – источник энергии в организме. Как энергетический резерв они присутствуют в организме человека в виде гликогена. Общая формула углеводов может быть представлена в виде C n (H 2 O) m . Большинство природных углеводов – производные циклических форм моносахаридов. Под действием излучения возможен отрыв атома водорода от молекулы углевода. При этом образуются свободные радикалы, а затем перекиси. В результате облучения из продуктов распада углеводов возможен синтез органического вещества, которое тормозит синтез ДНК и белка и подавляет деление клеток.

Разрушение углеводов сокращает запасы веществ, являющихся источниками энергии в организме, что может отразиться на функционировании многих жизненно важных систем организма.

Действие ионизирующего излучения на ткани, органы и системы органов. Группы клеток в многоклеточном организме, сходные по происхождению, строению и функциям, вместе с межклеточным веществом образуют ткани.

У человека выделяют четыре типа тканей: эпителиальные, соединительные, мышечные и нервная. Ткани образуют органы (сердце, почки, печень, желудок и т. д.). Клетки, входящие в состав ткани или органа, зависимы друг от друга и от окружающей среды.

Системы органов (скелетная, пищеварительная, кроветворная и др.) обеспечивают жизнедеятельность организма.

Реакция ткани, органа или системы органов человека на радиационное воздействие зависит от нарушений, появляющихся в клетках, из которых они построены. Однако реакция на действие ионизирующего излучения не сводится только к сумме эффектов, возникающих при облучении клеток. Величина облучаемого участка тела, особенности его строения и функционирования, интенсивность кровообращения и другие факторы также влияют на радиочувствительность ткани, органа или системы органов

Радиочувствительность органов и тканей. Радиационные эффекты, возникающие в биологических тканях и органах человека, непосредственно связаны с повреждением, а иногда и с гибелью клеток, из которых они сформированы. В то же время клетки обладают уникальной способностью к самовосстановлению, и при небольших дозах облучения ткани и органы способны восстанавливать свои функции.

Относительную чувствительность тканей и органов человека к действию ионизирующих излучений (их радиочувствительность), как уже отмечалось ранее, учитывают с помощью взвешивающих коэффициентов для тканей и органов (W T).

По способности делиться все клетки организма человека делят на делящиеся, слабоделящиеся и неделящиеся (Приложение В3). На ранней стадии развития организма все клетки способны к делению. В процессе развития организма возникают различия между клетками, и часть клеток утрачивает способность делиться. Делящиеся клетки менее устойчивы к действию ионизирующего излучения, чем неделящиеся.

Органы кроветворения (костный мозг, лимфатические узлы, селезенка) и пищеварения (слизистые оболочки желудка и кишечника), половые железы (семенники и яичники) состоят из интенсивно делящихся клеток и относятся к наиболее радиочувствительным органам. По этой же причине сформировавшийся организм более устойчив к действию радиации, чем формирующийся организм ребенка или подростка

При высоких уровнях поглощенных доз в тканях и органах человека возникают серьезные нарушения. В Приложении В4 описаны нарушения, которые, в основном, наблюдались при высоких уровнях поглощенных доз гамма- или рентгеновского излучения в результате однократного внешнего воздействия радиации на организм человека.


У больных, перенесших острую лучевую болезнь, в течение длительного времени, иногда всю жизнь, могут сохраняться остаточные явления и развиваться отдаленные последствия.

Остаточные явления чаще всего проявляются гипоплазией и дистрофией тканей, наиболее сильно поврежденных при облучении. Они представляют собой следствия неполного восстановления повреждений, лежавших в основе острого поражения: лейкопения, анемия, нарушения иммунитета, стерильность и др. В отличие от них отдаленные последствия - это развитие новых патологических процессов, признаки которых в остром периоде отсутствовали, таких как катаракты, склеротические изменения, дистрофические процессы, новообразования, сокращение продолжительности жизни. У потомства облученных родителей в результате мутаций в герминативных клетках могут проявиться генетические последствия.

Среди форм отдаленной лучевой патологии будут рассмотрены:

Неопухолевые отдаленные последствия;

Канцерогенные эффекты;

Сокращение продолжительности жизни.

Неопухолевые отдаленные последствия облучения

Неопухолевые (нестохастические) отдаленные последствия относятся к числу детерминированных эффектов облучения, тяжесть которых зависит, главным образом, от степени дефицита числа клеток соответствующих тканей (гипопластические процессы). К числу наиболее важных компонентов комплекса причин, определяющих развитие отдаленных последствий облучения, относятся повреждения мелких кровеносных сосудов и расстройства микроциркуляции, ведущие к развитию тканевой гипоксии и вторичному поражению паренхиматозных органов. Имеют также существенное значение клеточный дефицит в тканях, в которых пролиферация недостаточна для восполнения числа погибших после облучения клеток (рыхлая соединительная ткань, гонады и др.), сохранение изменений, возникших во время облучения в клетках непролиферирующих и медленно пролиферирующих тканей.

В большинстве некритических тканей возникновение тяжелых отдаленных последствий после общего кратковременного облучения маловероятно. Дозы, которые при общем облучении не абсолютно летальны, как правило, не превышают порога толерантности для некритических тканей и не могут привести к существенному дефициту клеток в них (как исключение из этого общего правила могут быть названы хрусталик, семенники). В критических же тканях регенераторные процессы, если организм не погибает, обычно довольно быстро восстанавливают клеточный состав. Поэтому отдаленные последствия, развивающиеся по причине дефицита клеток, более характерны для локального облучения, когда и в относительно радиорезистентных тканях могут быть поглощены дозы, превышающие их толерантность. Развитие названных изменений во взаимодействии с естественными возрастными процессами определяет развитие функциональных расстройств. Отдаленные последствия лучевого поражения могут проявиться функциональными расстройствами регулирующих систем: нервной, эндокринной, сердечно-сосудистой (астено-невротический синдром, вегето-сосудистая дистония).

К отдаленным нестохастическим эффектам относят и некоторые гиперпластические процессы, развивающиеся как компенсаторная реакция на снижение функций определенного типа клеток. Такие реакции характерны для эндокринных органов. Например, очаговая гиперплазия ткани щитовидной железы при повреждении других ее участков в случае инкорпорации радиоактивного йода.

Канцерогенные эффекты облучения

Радиационный канцерогенез относится к числу стохастических эффектов. Основной причиной злокачественной трансформации облученной клетки являются нелетальные повреждения генетического материала. На первых порах исследования радиационного канцерогенеза господствовало представление, о том, что прямой причиной злокачественной трансформации клетки является мутация, возникшая в результате поглощения порции энергии излучения соответствующим участком генома клетки. Хотя в отдельных случаях такой ход событий и может иметь место, более вероятны другие возможности.

Наиболее распространена гипотеза, в соответствии с которой под влиянием облучения повышается нестабильность ядерной ДНК. В процессе репарации ее нелетальных повреждений возникают условия, способствующие включению онковируса в геном соматической клетки или активация онковируса уже находившегося в репрессированном состоянии в составе генома.с последующей раковой трансформацией.

Злокачественной трансформации клетки, сохранившей жизнеспособность после облучения, может способствовать ее контакт с большим количеством клеточного детрита. Вследствие повреждения мембранных структур может измениться чувствительность клеток к регулирующим воздействиям со стороны гормонов, ингибиторов и т.п.

Фактором, способствующим злокачественной трансформации клетки бывают расстройства гормональной регуляции. Особенно велико значение этого фактора при внутреннем радиоактивном заражении, когда радионуклиды длительное время воздействуют на железу, нарушая выработку ею гормонов, влияющих на функции других органов. В результате создаются условия для возникновения гормон-зависимой опухоли (например, опухоли гипофиза у животных с вызванной введением 131I гипоплазией щитовидной железы). Щитовидную железу рассматривают как критический орган в формировании отдаленной патологии при поступлении в организм продуктов ядерного деления.

Способствуют развитию опухоли и вызванные облучением нарушения иммунитета, в результате чего облегчается развитие опухоли не только из трансформированных облучением клеток, но и из клеток, мутации в которых возникли спонтанно или под влиянием других факторов.

Латентный период между радиационным воздействием и возникновением новообразования составляет, в среднем, 5 - 10 лет, но в некоторых случаях может достигать 35 лет (рак молочной железы).

Вероятность возникновения опухоли в результате радиационного воздействия оценивается как один дополнительный случай на 20 человек, облученных в дозе 1 Гр. Относительный риск возникновения злокачественного новообразования в течение всей жизни выше для облученных в детстве. Выход опухолей на единицу дозы зависит от ряда факторов, таких как качество излучения (ОБЭ нейтронов по риску возникновения злокачественного новообразования после облучения в малых дозах может превышать 10), мощность дозы и др.

Сокращение продолжительности жизни

Интегральным показателем состояния здоровья популяции может служить средняя продолжительность жизни (СПЖ) составляющих эту популяцию особей. Важным проявлением отдаленных последствий действия облучения как раз и является сокращение СПЖ.

У грызунов оно составляет от 1 до 5 % на 1 Гр. При длительном воздействии малых доз гамма-излучения сокращение СПЖ у грызунов наблюдали, начиная с ежесуточной дозы 0,01 Гр, причем суммарная накопленная доза, после достижения которой начинало достоверно проявляться сокращение СПЖ, составляла не менее 2 Гр (для нейтронов значения суточной дозы и общей накопленной дозы, при которых СПЖ сокращалась, были на порядок меньше).

При анализе феномена сокращения СПЖ не удается выделить какой-нибудь типичный патологический процесс, непосредственно приводящий облученных животных к преждевременной гибели. В тех случаях, когда причину смертельного исхода у отдельных особей удавалось связать с каким-то конкретным патологическим процессом, это мог быть и сосудистый криз, и новообразование, и склеротические изменения, и лейкоз и т.д.

Основной причиной сокращения СПЖ после облучения в сублетальных дозах в настоящее время называют повреждение капилляров и мелких артериол, нарушения микроциркуляции, приводящие к гипоксии и гибели паренхиматозных клеток, преимущественно, в органах иммунитета и железах внутренней секреции. Отчасти сокращение СПЖ может быть связано с более частым развитием у облученных злокачественных новообразований.

Сокращение продолжительности жизни у человека может составить по разным оценкам от 100 до 1000 сут на 1 Гр при однократном кратковременном облучении и порядка 8 сут при хроническом. В то же время, как уже отмечалось, при дозах ниже 2 Гр само наличие сокращения продолжительности жизни признается не всеми исследователями.

Продолжительность жизни врачей-рентгенологов в период 1932 - 1942 гг. составила, в среднем, 60,5 лет против 65,7 лет у врачей других специальностей, то есть была на 5,2 года меньше. Расчеты показывают, что за 35 лет практики накопленная в то время рентгенологами доза могла составить 5 Гр.

Наиболее частыми причинами преждевременной гибели оказались новообразования, в том числе, лейкозы, смертность от которых была в 3 раза выше, чем среди прочего взрослого населения, дегенеративные изменения, инфекционные процессы и др. После 1945 г. в результате внедрения мер противорадиационной защиты, различия в продолжительности жизни рентгенологов и врачей других специальностей исчезли.



Основную часть ионизирующего облучения человек получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения попадают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении
. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним .

Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения, - как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

В то время как идентификация быстро проявляющихся («острых») последствий от действия больших доз облучения не составляет труда, обнаружить отдаленные последствия от малых доз облучения почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты, требуется еще и доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.

Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако, в то же время, никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность или риск наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

Острое поражение организма человека происходит при больших дозах облучения. Вообще говоря, радиация оказывает подобное действие, лишь начиная с некоторой минимальной, или «пороговой», дозы облучения.

Реакция тканей и органов человека на облучение неодинакова, причем различия очень велики. Величина же дозы, определяющая тяжесть поражения организма, зависит от того, получает ли ее организм сразу или в несколько приемов. Большинство органов успевает в той или иной степени залечить радиационные повреждения и поэтому лучше переносит серию мелких доз, нежели ту же суммарную дозу облучения, полученную за один прием.

Воздействие ионизирующего излучения на живые клетки

Заряженные частицы . Проникающие в ткани организма a- и b-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (g-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям.)

Электрические взаимодействия . За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения . И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционноспособные, как «свободные радикалы».

Химические изменения . В течение следующих миллионных долей секунды, образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты . Биохимические изменения могут произойти как через несколько секунд, так и чрез десятилетия после облучения и явиться причиной немедленной гибели клеток или таких изменений в них, которые могут привести к раку.

Разумеется, если доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр вызывают настолько серьезное поражение центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней. При дозах облучения от 10 до 50 Гр при облучении всего тела поражение центральной нервной системы может оказаться не настолько серьезным, чтобы привести к летальному исходу, однако облученный человек, скорее всего, все равно умрет через одну-две недели от кровоизлияний в желудочно-кишечном тракте. При еще меньших дозах может не произойти серьезных повреждений желудочного тракта или организм с ними справится, и тем не менее, смерть может наступить через один-два месяца, с момента облучения главным образом из-за разрушения клеток красного костного мозга - главного компонента кроветворной системы организма: от дозы 3-5 Гр при облучении всего тела умирает примерно половина всех облученных. Таким образом, в этом диапазоне доз облучения большие дозы отличаются от меньших лишь тем, что смерть в первом случае наступает раньше, а во втором - позже.

В организме человека ионизирующие воздействия вызывают цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н и ОН, которые образуются в результате радиолиза воды (в организме человека содержится до 70 % воды). Обладая высокой активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, что приводит к нарушению биохимических процессов в организме. В процесс вовлекаются сотни и тысячи молекул, не затронутых излучением. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это приводит к нарушению жизнедеятельности отдельных функций органов и систем организма. Под влиянием ионизирующих излучений в организме происходит нарушение функции кроветворных органов, увеличение проницаемости и хрупкости сосудов, расстройство желудочно-кишечного тракта, снижение сопротивляемости организма, его истощение, перерождение нормальных клеток в злокачественные и др. Эффекты развиваются в течение разных промежутков времени: от долей секунд до многих часов, дней, лет.

Радиационные эффекты принято делить на соматические и генетические. Соматические эффекты проявляются в форме острой и хронической лучевой болезни, локальных лучевых повреждений, например, ожогов, а также в виде отдаленных реакций организма, таких как лейкоз, злокачественные опухоли, раннее старение организма. Генетические эффекты могут проявиться в последующих поколениях.

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе свыше 0,25 Гр. При дозе 0,25…0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5… 1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5…2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продолжительным снижением числа лимфоцитов в крови (лимфопенией), возможна рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Лучевая болезнь средней тяжести возникает при дозе 2,5…4,0 Гр. Почти у всех в первые сутки - тошнота, рвота, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2…6 недель после облучения.

При дозе 4,0…6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превышающих 6,0…9,0 Гр, почти в 100 % случаев крайне тяжелая форма лучевой болезни заканчивается смертью из-за кровоизлияния или инфекционных заболеваний-.

Приведенные данные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплексном лечении позволяют исключить летальный исход при дозах около 10 Гр.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика, снижение иммунитета организма.

Степень воздействия радиации зависит от того, является облучение внешним или внутренним (при попадании радиоактивного изотопа внутрь организма). Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, кальций, радий, стронций накапливаются в костях, изотопы иода вызывают повреждение щитовидной железы, редкоземельные элементы - преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, повреждение семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония.

Гигиеническая регламентация ионизирующего излучения осуществляется Нормами радиационной безопасности НРБ-99 (Санитарными правилами СП 2.6.1.758-99).

Основные дозовые пределы облучения и допустимые уровни устанавливаются для следующих категорий облучаемых лиц:

Персонал - лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

Все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Для категорий облучаемых лиц устанавливают три класса нормативов: основные пределы доз, (табл. 1) и допустимые уровни, соответствующие основным пределам доз и контрольные уровни.

Доза эквивалентная Н- поглощенная доза в органе или ткани D, умноженная на соответствующий взвешивающий коэффициент для данного излучения W:

H =W*D

Единицей измерения эквивалентной дозы является Дж/кг, имеющий специальное наименование зиверт (Зв).

Таблица 1

Основные пределы доз (извлечение из НРБ-99)

Нормируемые величины

Пределы доз, мЗв

Персонал

(группа А)*

Население

Эффективная доза

20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год

1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год

Эквивалентная доза за год в:

хрусталике глаза ***

коже****

Кистях и стопах

* Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.

** Основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б, равны 1/4 значений для персонала группы А. Далее в тексте все нормативные значения для категории персонал приводятся только для группы А.

*** Относится к дозе на глубине 300 мг/см 2 .

**** Относится к среднему по площади в 1 см 2 значению в базальном слое кожи толщиной 5 мг/см 2 под покровным слоем толщиной 5 мг/см 2 . На ладонях толщина покровного слоя 40 мг/см. Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает непревышение предела дозы на хрусталик от бета-частиц.

Значения для фотонов, электронов и ионов любых энергий составляет 1, для а - частиц, осколков деления, тяжелых ядер - 20.

Доза эффективная - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе (ткани) на соответствующий взвешивающий коэффициент для данного органа или ткани:

Основные пределы доз облучения не включают в себя дозы от природных и медицинских источников ионизирующего излучения, а также дозу вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Таблица 2

Допустимые уровни общего радиоактивного загрязенния рабочих поверхностей кожи (в течение рабочей смены) (извлечение из НРБ-96), спецодежды и средств индивидуальной защиты, частиц /(см 2 *мин)

Объект загрязнения

b -Активные нуклилы

b -Активные

нуклиды

Отдельные

прочие

Неповрежденная кожа, полотенца, спецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

2

2

200

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

5

20

2000

Наружная поверхность дополнительных средств индивидуальной зашиты, снимаемой в саншлюзах

50

200

10000

Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

5

20

2000

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

50

200

10000

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) - 1000 мЗв, а для населения за период жизни (70 лет) - 70 мЗв. Кроме этого задаются допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи (в течение рабочей смены), спецодежды и средств индивидуальной защиты. В табл. 2 приведены числовые значения допустимых уровней общего радиоактивного загрязнения.

2. Обеспечение безопасности при работе с ионизирующими излучениями

Все работы с радионуклидами правила подразделяют на два вида: на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.

Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Защитные мероприятия, позволяющие обеспечить условия радиационной безопасности при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом. Главные из них следующие:

1. Доза внешнего облучения пропорциональна интенсивности излучения времени действия.

2. Интенсивность излучения от точечного источника пропорциональна количеству квантов или частиц, возникающих в них в единицу времени, и обратно пропорционально квадрату расстояния.

3. Интенсивность излучения может быть уменьшена с помощью экранов.

Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности: уменьшение мощности источников до минимальных величин (защита количеством); сокращение времени работы с источниками (зашита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (зашита экранами).

Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, т.е. пропорционально сокращает мощность излучения. Однако требования технологического процесса часто не позволяют сократить, количество радиоактивного вещества в источнике, что ограничивает на практике применение этого метода зашиты.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми активностями.

Защита расстоянием -достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов Применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений являются материалы с большим 2, например свинец, позволяющий добиться нужного эффекта по кратности ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

По своему назначению защитные экраны условно разделяются на пять групп:

1. Защитные экраны-контейнеры, в которые помещаются радиоактивные препараты. Они широко используются при транспортировке радиоактивных веществ и источников излучений.

2. Защитные Экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого (или ускоряющего) напряжения на источнике ионизирующей радиации.

3. Передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны.

4; Защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.). Такой вид защитных экранов предназначается для зашиты помещений, в которых постоянно находится персонал, и прилегающей территории.

5. Экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).

Зашита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Все виды работ с открытыми источниками ионизирующих излучений разделены на 3 класса. Чем выше класс выполняемых работ, тем жестче гигиенические требования по защите персонала от внутреннего переоблучения.

Способы защиты персонала при этом следующие:

1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

3. Мероприятия планировочного характера. Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размешаться в отдельных зданиях или изолированной части здания, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных специально выделенных комнатах.

4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.

6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей; зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Службы радиационной безопасности.
Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специализированные службы-службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ. Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачи.

Службы выполняют все виды контроля на основании действующих методик, которые постоянно совершенствуются по мере выпуска новых видов приборов радиационного контроля.

Важной системой профилактических мероприятий при работе с источниками ионизирующих излучений является проведение радиационного контроля.

Основные задачи, определяемые национальным законодательством по контролю радиационной обстановки в зависимости от характера проводимых работ, следующие:

Контроль мощности дозы рентгеновского и гамма-излучений, потоков бета-частиц, нитронов, корпускулярных излучений на рабочих местах, смежных помещениях и на территории предприятия и наблюдаемой зоны;

Контроле за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений предприятия;

Контроль индивидуального облучения в зависимости от характера работ: индивидуальный контроль внешнего облучения, контроль за содержанием радиоактивных веществ в организме или в отдельном критическом органе;

Контроль за величиной выброса радиоактивных веществ в атмосферу;

Контроль за содержанием радиоактивных веществ в сточных водах, сбрасываемых непосредственно в канализацию;

Контроль за сбором, удалением и обезвреживанием радиоактивных твердых и жидких отходов;

Контроль уровня загрязнения объектов внешней среды за пределами предприятия.